Central limit theorems for a supercritical branching process in a random environment

نویسندگان

  • Hesong Wang
  • Zhiqiang Gao
  • Quansheng Liu
  • Hesong WANG
  • Zhiqiang GAO
  • Quansheng LIU
چکیده

For a supercritical branching process (Zn) in a stationary and ergodic environment ξ, we study the rate of convergence of the normalized population Wn = Zn/E[Zn|ξ] to its limitW∞: we show a central limit theorem forW∞−Wn with suitable normalization and derive a Berry-Esseen bound for the rate of convergence in the central limit theorem when the environment is independent and identically distributed. Similar results are also shown for Wn+k −Wn for each fixed k ∈ N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact convergence rates in central limit theorems for a branching random walk with a random environment in time

Chen [Ann. Appl. Probab. 11 (2001), 1242–1262] derived exact convergence rates in a central limit theorem and a local limit theorem for a supercritical branching Wiener process. We extend Chen’s results to a branching random walk under weaker moment conditions. For the branching Wiener process, our results sharpen Chen’s by relaxing the second moment condition used by Chen to a moment condition...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Limit Theorems for Supercritical Markov Branching Processes with Non-homogeneous Poisson Immigration

This paper deals with Markov branching processes allowing immigration at random time points described by a non-homogeneous Poisson process. This class of processes generalizes a classical model proposed by Sevastyanov, which included a time-homogeneous Poisson immigration. The proposed model finds applications in cell kinetics studies. Limit theorems are obtained in the supercritical case. Some...

متن کامل

Central limit theorems for a branching random walk with a random environment in time

We consider a branching random walk with a random environment in time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The environment is supposed to be stationary and ergodic. For A ⊂ R , let Zn(A) be the number of particles of generation n located in A. We show central l...

متن کامل

On Maximal Number of Offspring in Branching pro -

The number Yn of oospring of the most proliic individual in the nth generation of a Bienaym e-Galton-Watson process is studied. The asymptotic behavior of Yn as n ! 1 may be viewed as an extreme value problem for i.i.d. random variables with random sample size. Limit theorems for both Yn and EYn provided that the oospring mean is nite are obtained using some convergence results for branching pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017